25 ml of H₂O, followed by 75 ml of 2 N NaOH and 20 ml of H₂O, was added dropwise. The pptd solid was filtered and washed thoroughly with Et₂O. The combined ext was dried (MgSO₄), concd, and distd to give 14.2 g (79%) of 4, bp $102-104^{\circ}$ (7.0 mm), solidifies to a low-melting solid. Anal. (C₁₂H₂₁N) C, H, N.

The picrate of 4 was obtd as tiny yellow crystals from EtOH, mp 253-256° dec. Anal. $(C_{18}H_{24}N_4O_7)$ C, H, N.

N-[2-[(1-Adamantyl)ethylamino]ethyl]-p-toluenesulfonamide (5). To a mixt of 4.31 g (0.1 mole) of ethyleneimine and 10.12 g(0.1 mole) of Et₃N in 150 ml of dry C_6H_6 cooled to -5° , a soln of 19.07 g (0.1 mole) of TsCl in 200 ml of dry CHCl₃ was added during 1 hour. After stirring for 0.5 hr, dry Et₂O was added and the pptd solid was removed by filtration and washed with Et₂O. The combined ext was concd to a syrup at room temp and dissolved in 100 ml of dry C_6H_6 . To the above soln of aziridine tosylate, a soln of 17.93 g (0.1 mole) of 4 in 100 ml of dry C_6H_6 was added at 20°, and the mixt was then refluxed for 6 hr. Evapn of the solvent in vacuo gave a thick syrup. Et₂O (500 ml) was added, and after filtration of the solids, the Et₂O ext was concd, 100 ml of hexane was added, and the mixt was allowed to stand for 2 hr, whereupon 10.3 g (27%) of solid sepd, mp 90-92°. An analytical sample was obtd as white crystals from C₆H₆-hexane, mp 92-93°. Anal. (C₂₁H₂₂N₂O₂S) C, H, N. Evapn of the hexane soln yielded 8.5 g of the starting material 4.

N-(1-Adamantyl)-*N*-ethylethylenediamine (6). To a soln of 3.76 g (0.01 mole) of 5 in a mixt of 25 ml of Et_2O and 75 ml of THF, 100 ml of liq NH₃ was added under a Dry 1ce condenser. Freshly cut Na was added with stirring during 0.5 hr till a permanent blue color appeared. After stirring of the soln for 2 hr, 5 g of solid NH₄Cl was added and the excess NH₃ was allowed to evap. The solid was filtered and ext thoroughly with Et_2O . The combined Et_2O exts were concd to give 2.1 g (98%) of 6 as a thick oily liq. The salt of 6 with 1 mole of *p*-aminobenzoic acid crystd from MeCN as white needles, mp 159-160°. Anal. ($C_{21}H_{33}N_3O_2$) C, H, N. 3-(1-Adamantylamino)propionitrile (7). To a soln of 10 g of

3-(1-Adamantylamino)propionitrile (7). To a soln of 10 g of adamantylamine in 100 ml of acrylonitrile, 1 ml of H₂O was added and the mixt was heated under reflux overnight. Evapn of the excess acrylonitrile gave a thick liquid which solidified to give 12.3 g (95%) of a glassy solid. An analytical sample distd at 165-175° (0.6-0.7 mm). Anal. ($C_{13}H_{20}N_2$) C, H, N. N-(1-Adamantyl)-1,3-propanediamine (8). To a well-cooled

N-(1-Adamantyi)-1,3-propanediamine (8). To a well-cooled suspension of 3.8 g of LAH in 200 ml of dry Et_2O , a soln of 20.4 g (0.1 mole) of 7 was added dropwise at room temp. After this addn, the reaction mixt was stirred at room temp for 3 hr. With cooling, 4 ml of H₂O was added, followed by 3 ml of 5 N NaOH soln, and 14 ml of H₂O. The Et_2O layer was decanted, and the solid cake was washed with several portions of Et_2O . The Et_2O layers were combined, dried (MgSO₄), and evapd, to yield 17.1 g (85%) of 8. The

dioxalate melted at 238-239°. Anal. $(C_{13}H_{24}N_2 \cdot 2(COOH)_2) C$, N; calcd: H, 7.27; found: H, 6.79.

The prepn of compds in Table I is exemplified by the following typical procedure.

N-[2-[(1-Adamantyl)ethylamino]ethyl]-p-nitrobenzamide HCl (13). To a soln of 1.11 g (0.005 mole) of 6 in 50 ml of dry CHCl₃, a soln of 0.03 g (0.005 mole) of <math>p-O₂NBzCl in 25 ml of dry CHCl₃ was added dropwise at room temp and the mixt was refluxed for 4 hr. Evapn of the CHCl₃ gave a solid, which crystd on the addn of Et₂O, yielding 1.6 g (80%) of 13 as brownish white crystals. A sample crystd from MeCN melted at 191-193°. Anal. (C₂₁H₂₉N₃O₃·HCl) C, H, N, Cl.

N-[2-[(1-Adamantyl)ethylamino]ethyl]-p-aminobenzamide · HCl (14). A soln of 1.2 g (0.003 mole) of 13 in 50 ml of EtOH was reduced in a Parr hydrogenator, using 0.12 g of PtO₂ as catalyst. Evapn of the solvent, after filtration of the catalyst, gave a solid that was crystd from MeCN to yield 0.78 g (69%) of 14 as pink-white crystals, mp 280-282°. Anal. (C₂₁H₃₁N₃O·HCl) C, H, N.

Acknowledgment. The authors are indebted to Dr. J. Bernstein for his suggestions and encouragement during this investigation, to Mr. J. High and Dr. R. Laffan of our Pharmacology Department for the data on antiarrhythmic activity in mice, and to Dr. V. Lanzoni of the Boston University of Medicine for the corresponding data for dogs. The authors wish to thank Mr. J. Alicino and his staff for the microanalyses.

References

- Abstracts, Division of Medicinal Chemistry, 158th National Meeting of the American Chemical Society, New York, N. Y., Sept 1969, MED1 44.
- (2) D. K. Yung, L. G. Chatten, and D. P. MacLeod, J. Pharm. Sci., 57, 2073 (1968).
- (3) (a) K. Gerzon, E. V. Krumkalns, R. L. Brindle, F. J. Marshall, and M. A. Root, *J. Med. Chem.*, 6, 760 (1963); (b) R. T. Rapala, R. J. Kraay, and K. Gerzon, *ibid.*, 8, 580 (1965); (c) W. Korytnyk and G. Fricke, *ibid.*, 11, 180 (1968); (d) V. G. Keizer and J. G. Korsloot, *ibid.*, 14, 411 (1971); (e) A. N. Voldeng, C. A. Bradley, R. D. Lee, E. L. King, and F. L. Melder, *J. Pharm. Sci.*, 57, 1053 (1968).
- (4) H. Stetter, J. Mayer, M. Schwarz, and C. Wulff, Ber., 93, 226 (1960).
- (5) J. W. Lawson, J. Pharmacol. Exp. Ther., 160, 22 (1968).

New Compounds

Some Cyclic Derivatives of 2-Cyclohexylamino-1-phenylethanol

W. J. Irwin,* D. L. Wheeler, and N. J. Harper

Department of Pharmacy, University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, England. Received October 8, 1971

Our interest in derivatives of β -aminoethanols^{1,2} for a general screening program has led us to study some 5-membered (2)³⁻⁵ and 6-membered (3)^{6,7} cyclic compounds derived from 2-cyclohexylamino-1-phenylethanol (1a).

Some preliminary screening results on mice which also include 2-phenethylamino-1-phenylethanol (4) and 3-phenethyl-5-phenyloxazolidine (5), are presented in Table II. No potentiation of subthreshold doses of pentobarbital was observed with any derivative prepared in this investigation and the most interesting compound appeared to be 2-cyclohexylamino-1-phenylethanol (1a).

Ph R'O R'' 1a, R' = R'' = H b, R' = H; R'' = NH₂ c, R' = H; R'' = NHCOPh d, R' = R'' = COCH₂Ph e, R' = H; R'' = CH₂CH₂Ph Ph Control C

Compd	Formula ^{<i>a</i>}	Mp, °C	Yield, %	Solvent	1r, cm ⁻¹
1b	C ₁₄ H ₂₂ N ₂ O	82-83	52	Petr ether	
1b·HCl	$C_{14}H_{23}CIN_2O$	121-122		EtOH-Et ₄ O	
1c	$C_{21}H_{26}N_2O_2$	165-166	78	EtOH-petr ether	1630 (C=O)
1d	$C_{30}H_{33}NO_3$	84-85	47	Petr ether	1730(O-C=O)
	J V J				1620(N-C=0)
1e·HCl	$C_{22}H_{30}CINO$	163-164	94	EtOH-Et,O	3200 (OH)
2a · HCl	$C_{15}H_{21}CINO$	158-159	64	EtOH-Et,O	1120 (O-C-N)
2b ^b	$C_{14}H_{19}NO_2S$	107-108	15	EtOH	1135(C=S)
3a picrate	$C_{22}H_{24}N_4O_9$	1 8 0-181	40	C ₆ H ₆	1740 (C=0)
3b ^c	C ₁₆ H ₁₉ NO ₃	126-127	73	Me,CO-cyclohexane	1745 (O-C=O)
				2 2	1665 (N-C=O)
3c	$C_{15}H_{20}N_{2}OS$	182-183	36	CHCl ₃ -petr ether	1190 (C=S)
3 d · HC1	C ₁₆ H ₂₃ CIN ₂ OS	148-149	49	EtOH-Et,O	1170 (C=S)

^{*a*}All compds were analyzed for C, H, and N and were within $\pm 0.4\%$ of the theoretical values. ^{*b*}Shown by the and nmr to be a mixt of geometrical isomers (5:1) with the cis isomer predominant.⁸ ^{*C*}Caled nmr spectrum in C₆H₆ indicates an envelope conformation.²

Table II.

Table I

Compd	LD _{\$0} , ^a mg/kg	Phenylquinone- induced writhing ^b		Neuropharmacological Tests ^b					
								Tonic extension	Death
		% inhibition	ED₅₀, mg/kg	My dr iasis, %	Rotating rod, %	Grìp strength, %	Hot plate, %	(pentylene- tetrazole), %	(pentylene- tetrazole), %
1a	30-100		23.5	65	20	20	40	100	100
4	30-100		5	-10	0	20	0	0	0
1d	100-300	26.5		0	20	0	0	0	0
1e	100-300	13.3		0	0	0	0	6 0	20
2a	30-100	44		16	0	0	0	80	0
5	30-1 00		10.5	27	0	0	0	0	20
2c	>300	35.7		30	20	0	Ō	40	80
3b	>300	0		-26	0	20	0	10	40

^a1p. ^bSc. ^cDose levels, 1a, 1d, 1e, 2e, and 3b, 100 mg/kg; 2a, 30 mg/kg; 4 and 5, 10 mg/kg.

This showed considerable anticonvulsant properties against pentylenetetrazole (ED_{50} 3-5 mg/kg sc) but was inactive against electroshock and strychnine-induced convulsions. The N-phenethyl analog (4) and the cyclic derivatives showed less activity under the test conditions.

Experimental Section

3-Cyclohexyl-5-phenyloxazolidine (2a). The aminoethanol (1a) (2.19 g) and formalin (1 ml, 40%) in EtOH (20 ml) were refluxed for 12 hr to yield the oxazolidine, bp 126-130 (0.3 mm), isolated as its stable hydrochloride.

3-Cyclohexyl-2-oxo-5-phenyl-1,2,3-oxathiazolidine (2b). $SOCl_2$ (2.3 ml), in CH₂Cl₂ (50 ml) was added slowly (15 min) to the aminoethanol (1a) (6.57 g) and Me₃N (11 ml) in CH₂Cl₂ (150 ml). The mixt was stirred (room temp) for 18 hr to yield 2b.

4-Cyclohexyl-6-phenylmorpholin-2-one (3a). Ethyl bromoacetate (3.34 g) in 1,2-dimethoxyethane (5 ml) was added slowly to the aminoethanol 1a (4.38 g) and NaHCO₂ (2 g) in 1,2-dimethoxyethane (20 ml) and the mixt was refluxed for 66 hr. The cooled mixt was dild with Et₂O, washed with H₂O, and distd to yield the morpholinone, bp 150-160° (0.7 mm), characterized as its picrate.

4-Cyclohexyl-6-phenylmorpholine-2,3-dione (3b). The aminoethanol 1a (13.57 g), $(COOEt)_2$ (4.38 g), and PhMe (150 ml) were refluxed for 18 hr during which time PhMe was slowly distd from the mixt. Evapn of residual solvent yielded 3b.

1-Cyclohexyl-1-(2-hydroxyphenethyl)hydrazine (1b). The aminoethanol 1a (21.9 g) in 1 N HCi (100 ml) at 50° was treated with NaNO₂ (10 g) in H₂O (30 ml) and stirred 2 hr. Et₂O extn yielded the N-nitroso compd as a yellow oil (20.2 g, 81%) which was reduced with LAH (8 g) in Et₂O (100 ml) to give the hydrazine.

4-Cyclohexyl-6-phenyl-3,4,5,6-tetrahydro-2*H*-1,3,4-oxadiazine-2thione (3c). A cold soln of KOH (1.12 g) in H₂O (4 ml) and EtOH (20 ml) was added to the hydrazine 1b (2.34 g) and CS₂ (1.52 g) and the mixt was refluxed for 4 hr. The cooled soln was dild with H₂O (50 ml) and acidified with N HCl to ppt 3c. Treatment with Me₂SO₄ yielded the N-Me deriv 3d.

1-Cyclohexyl-1-(2-hydroxy-2-phenylethyl)phenethylamine (1e).

The aminoethanol 1a (8.7 g), phenylacetyl chloride (13.1 g), and NaHCO₃ (10 g) in C₆H₆ (50 ml) refluxed for 4 hr, yielded the O,N-diphenylacetyl derivative 1d. Reduction of this amidoester (26.45 g) with LAH (4.6 g) in Et₂O (150 ml) yielded 1e.

Acknowledgment. We wish to thank Organon Laboratories for the award of a Postgraduate Studentship to D. L. Wheeler, and Dr. W. R. Buckett and N. Duff (Organon) for the pharmacological testing data.

References

- (1) W. J. Irwin and D. L. Wheeler, J. Chem. Soc C, 3166 (1971).
- (2) D. L. Wheeler, Ph.D Thesis, University of Aston in Birmingham, Birmingham, England, 1971.
- (3) E. Tubaro, Boll. Chem. Farm., 104, 602 (1965)
- (4) M. E. Dyen and D. Swern, Chem. Rev., 67, 197 (1967).
- (5) G. A. Youngdale, G. W. Duncan, D. E. Emmert, and D.
- Ledniser, J. Med. Chem., 9, 155 (1966).
- (6) H. S. Mosher, M. B. Frankel, and M. Gregory, J. Amer. Chem. Soc., 75, 5326 (1953).
- (7) S. Raines and C. A. Kovacs, J. Med. Chem., 11, 854 (1968).
- (8) J. A. Deyrup and C. L. Moyer, J. Org. Chem., 34, 175 (1969).

Central Nervous System, Antidiuretic, and Some Other Activities of Pyrazoles

H. G. Garg*

Department of Chemistry, University of Roorkee, Roorkee, India. Received March 5, 1971

A number of pyrazoline-4,5-diones and their functional derivatives¹⁻⁵ were tested for CNS⁶ and antidiuretic⁷ activ-

^{*}Address correspondence to: Harvard University Medical School, Laboratory for Carbohydrate Research, Massachusetts General Hospital, Boston, Massachusetts 02114.